If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+18y+60=0
a = 1; b = 18; c = +60;
Δ = b2-4ac
Δ = 182-4·1·60
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{21}}{2*1}=\frac{-18-2\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{21}}{2*1}=\frac{-18+2\sqrt{21}}{2} $
| -1x-7-3x+4=25 | | 5(u+1-u=3(u-1+7) | | 5(u+1-u=3(u-1+7 | | 3(y-9)-4=-7(-4y+3)-7y | | 1/2x+3=14 | | 1/2x3=14 | | 2(w+4)=-9w+41 | | 23+28v=-21+14v | | 3u=28-4u | | 2(x-3)-(-2x+1)=5x-3 | | 6-3/7*h=11 | | 8x=136−9x | | 2x+20=3x-15 | | 3x=54−6x | | 5-3b=17+b | | 7x+3=-5+3x | | 7d-18=5d+4 | | 10j-66+2j+6=180 | | 2x²-6x=0 | | S(x)=x2-12x+32 | | 14e+14=18 | | 10x+20(7600-x)=118000 | | 0.5(2x+8)=4(0.25x+1) | | 7-(3-y)=8+(2-y) | | T1=3(n-1) | | 5x-54+3x-6=180 | | 3x-6=5x-15 | | 4y+y+1=7(y-1 | | 6x+7=2(3x-5) | | 11a=27+8a | | 4y=16+(8-2y) | | 180-2a+44+a+10=180 |